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ABSTRACT
In the field of Music-Information Retrieval (Music-IR), algo-
rithms are used to analyze musical signals and estimate high-
level features such as tempi and beat locations. These fea-
tures can then be used in tasks to enhance the experience of
listening to music. Most conventional Music-IR algorithms
are trained and evaluated on audio that is taken directly
from professional recordings with little acoustic noise. How-
ever, humans often listen to music in noisy environments,
such as dance clubs, crowded bars, and outdoor concert
venues. Music-IR algorithms that could function accurately
even in these environments would therefore be able to reli-
ably process more of the audio that humans hear. In this
paper, I propose methods to perform Music-IR tasks on mu-
sic that has been contaminated by acoustic noise. These
methods incorporate algorithms such as Probabilistic La-
tent Component Analysis (PLCA) and Harmonic-Percussive
Source Separation (HPSS) in order to identify important el-
ements of the noisy musical signal. As an example, a noise-
robust beat tracker utilizing these techniques is described.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing
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1. INTRODUCTION
Researchers in the field of Music-Information Retrieval, or

Music-IR, seek to design automated systems to extract high-
level features from musical works. Such features, which in-
clude beat locations and tempi, can then be used in systems
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that assist users as they listen to and enjoy music. If a band
wishes to incorporate robots or other computer-controlled
elements into their performances, for instance, knowledge of
beat locations can help ensure that those elements are syn-
chronized with the human musicians. As another example,
automatic tempo extraction can help an exerciser choose
music with the same speed as their workout, making for a
more enjoyable experience. Due in part to its wide utility,
this field is now studied by many researchers. The Music
Information Retrieval Evaluation eXchange (MIREX), an
annual Music-IR competition which has run continuously
since 2005, features a vast array of algorithms from all over
the world [6].

While this field is advancing rapidly, many of the best
Music-IR algorithms and evaluations still focus on noise-free,
professional-quality audio. For example, all of the datasets
used in the 2013 MIREX beat tracking competition came
from clean digital recordings, even the dataset designed to
be difficult to track [12]. However, humans listen to much
of their music in noisy environments, ranging from crowded
bars and dance clubs to outdoor concert venues, and the
noise in these environments can contaminate the acoustic
signal of the music. As a result, while many Music-IR sys-
tems are well adapted to clean, idealized audio, they are not
necessarily able to deal with the noise and other distortions
present in much of the music humans enjoy.

This work involves the development of noise-robust Music-
IR systems. Since the vast majority of existing Music-IR
datasets contain only clean audio tracks, methods for collect-
ing datasets of music with various types of acoustic noise are
discussed. Subsequently, an algorithm for decomposing an
acoustic signal into its component parts is described. Such a
system is useful for isolating important elements of noisy mu-
sical signals. This algorithm is then used in a noise-robust
system for estimating the tempo and the beat locations in
a piece of music. This paper finished by exploring some
prospective work that could be used to further refine the
proposed techniques.

2. RELATED WORK
One method for dealing with noisy audio is to attempt

to remove the noise before processing the remaining signal.
Methods such as spectral subtraction, in which the noise
spectrum is estimated and subtracted from the overall sig-
nal, are suboptimal for this purpose because they can create
artifacts [1, 2]. As such, techniques were developed that
apply gain factors to each spectral bin based on its esti-
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Figure 1: General algorithm for beat tracking.

mated Signal to Noise Ratio (SNR), suppressing only bins
that are sufficiently noisy [3]. The result is a cleaner signal
with fewer artifacts. However, such noise reduction meth-
ods are still imperfect and have difficulty removing all of the
noise from a signal. Even with the best systems of this kind,
Music-IR algorithms that operate on audio heard in noisy
environments will likely have to deal with some noise.

Probabilistic Latent Component Analysis can be used to
estimate the content of spectral bins that are obscured by
noise [16]. With this method, a set of components that com-
prise the spectrogram are estimated with an Expectation-
Maximization algorithm. Simultaneously, the probability of
any particular missing value being formed from a weighted
sum of particular components is also estimated. Subjects
reported that audio cleaned using this algorithm sounded
better than noisy audio not reconstructed with this system.

There are multiple kinds of noise that must be consid-
ered when developing a noise-robust algorithm. The noise
produced by a moving robot, also called ego noise, for in-
stance, is different from that produced by humming lights
[13]. Motor noises are nonstationary, as they are based on
the position and velocity of the motors, which do not remain
constant. This noise may also become somewhat periodic if
the robot moves in a repeating pattern, potentially result-
ing in a situation where the system tracks the robot’s noise
and not the music. In order to guarantee that a system
is noise-robust, particularly in environments incorporating
musical robots, Music-IR algorithms designed to be used in
noisy environments should be evaluated on audio containing
robot noise as well as other noise sources.

In this paper, I give an example algorithm for tempo es-
timation and beat tracking. This task is generally decom-
posed into three separate steps (Figure 1) [14]. First, the
acoustic waveform of the music is converted into one or
more lower-dimensional representations called ‘accent sig-
nals’ which have local extrema at beat locations. Second, the
system analyzes the accent signal(s) to estimate the tempo
of the music. Finally, the system uses the estimated tempo
and accent signal(s) to determine beat locations. While beat
tracking systems vary in terms of the individual algorithms
and features, most of them utilize these three steps [9].

3. PROPOSED APPROACH
My goal is to design Music-IR algorithms that can perform

accurately not just on audio that is taken directly from clean,
professionally-produced digital recordings, but also on music
recorded from noisy acoustic channels. By obtaining noisy
data and building algorithms that can reliably function on
that music, I hope to create Music-IR tools that function on
more of the music that humans enjoy.

One desired property of my final system is that it be ro-
bust to multiple types of noise. This will allow for it to be
more flexible than if it were only robust to specific noise
sources. I therefore am recording datasets of audio con-
taminated by a variety of different noise sources. This will
allow me to evaluate how my system performs on conven-
tional noise signals such as the humming of lights as well as
more difficult noise sources such as the ego noise produced
by robots [13]. I am also annotating the music in these
datasets with ground-truth values for the high-level features
that I am searching for, such as tempo and beat locations,
in order to better evaluate the accuracy of my algorithms.

When designing a system that is to process noisy data,
there are two general approaches. One is to try to remove
as much of the noise as possible from the signal and then
process the signal normally, and the other is to try to pro-
cess the noisy signal in some manner that is robust to noise.
The former approach has the disadvantage that noise reduc-
tion algorithms are both unlikely to remove all of the noise,
and can introduce distortions into the signal [2]. As such, I
am building systems that, rather than removing noise, are
designed to performed well even if the audio is noisy.

In summary, I am gathering annotated datasets of audio
contaminated with multiple types of noise, and then design-
ing noise-robust Music-IR algorithms that will be tested on
those datasets. I am using Probabilistic Latent Component
Analysis (PLCA) and Harmonic-Percussive Source Separa-
tion (HPSS) in order to find important information from the
signals even in the presence of noise. I have already designed
a beat-tracking algorithm that uses these methods to calcu-
late possible accent signals. Subsequently, my beat tracker
uses a periodicity estimator and a dynamic programming
algorithms to obtain the tempo and beat estimates.

4. CONTRIBUTIONS
My contributions thus far can be grouped into two areas.

First, I collected multiple datasets of musical audio contam-
inated with various types of noise. Second, I designed a
beat tracking algorithm that is robust to the noises in the
datasets. Both aspects of my work are important for the
continued pursuit of noise-robust Music-IR in general.

4.1 Datasets
My first step was to gather datasets of noisy audio. I

collected twenty songs with clearly identifiable beats as my
baseline set of ‘clean’ songs and verified that the songs could
be accurately tracked by conventional beat trackers. This
helped to ensure that, if my tracker performed poorly on
the music after I added noise, the low accuracies would be
due to the noise and not the music itself. I then manually
marked all of the beats in each song. This provided me with
ground-truth data that I could use to evaluate my system.

The next step was to add noise sources to the audio. In
order to set up a recording apparatus in a noisy environment,
I mounted microphones on and around a Hubo robot (Figure



Figure 2: A Hubo robot.

2). Hubo was used in order to provide additional sources of
noise that would not be present in an ordinary empty room.
I played the clean music through a speaker and recorded it on
the microphones, taking one dataset in which the robot was
on but unmoving, and others in which the robot was moving
its arms either randomly, in a predetermined pattern, or in
synchrony with the music. The first dataset contained noise
from the robot’s fans and computers, in addition to sounds
provided by the room itself such as lighting hums. The other
datasets added ego noise as well. Finally, the ground-truth
annotations were added to both sets of noisy music tracks.

4.2 Algorithm
My beat tracking algorithm begins by taking five seconds

of audio and calculating its magnitude spectrum (Figure 3).
An implementation of HPSS is then performed on the spec-
trum [8]. Beats are often more percussive than harmonic in
nature, so HPSS allows the system to discard harmonic data
and use only the more meaningful percussive component.

The percussive component is then processed by PLCA,
which uses an Expectation-Maximization Algorithm to de-
compose the audio into 20 components [10, 16]. This method
estimates the components and their activation probabilities
over time. A component with a periodic beat will likely have
large activation values spaced at that period and small val-
ues elsewhere. As such, the activations of the components
are potential accent signals for estimating beat positions. I
determined that activations of individual components would
be more likely to provide reliable information in noisy envi-
ronments than conventional beat tracking features such as
spectral contrast or spectral flux, which are evaluated over
the entire audio signal (e.g., the mixture of all the compo-
nents) and so may be distorted by noise [9]. I thus chose to
use PLCA, which can accurately identify such components,
for the decomposition step.
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Figure 3: The beat tracking algorithm.

The activations for each component are then correlated
with trains of impulses spaced at intervals corresponding to
various tempi. The activation signal with the highest cor-
relation is considered to be the most periodic, and thus the
best accent signal of the group. The period of the impulse
train at that correlation is used to estimate the tempo of the
music. From there, dynamic programming is used to find the
best sequence of beats spaced according to that tempo and
occurring at local maxima of the accent signal.

4.3 Results
In order to determine the negative effects of noise, I evalu-

ated my noisy audio datasets on a beat tracker not designed
for noise robustness [11]. As expected, performance dropped
sharply. The clean dataset achieved an average F-Measure
score of about .98, very close to the maximal value of 1. The
dataset taken with a randomly moving robot, however, did
no better than .84. Spectral subtraction not only failed to
bring accuracy back up to .98, but also required substan-
tial fine-tuning that limited its general utility. This demon-
strated how deleterious noise can be on the performance of
conventional beat trackers. It also indicated that a noise-
removal approach was unlikely to work as well as I wished,
so a noise-robust algorithm could be preferable.



Table 1: Average beat tracker accuracy for various metrics on noisy musical audio.
Dataset 1 (stationary robot) Dataset 2 (moving robot)

Tracker FMeasure Information Gain CMLc FMeasure Information Gain CMLc
Proposed 91.4 91.6 90.1 82.5 75.4 77.8
Autocorrelation 82.9 78.8 79.5 77.1 65.5 70.5
Tracker 1 [5] 61.1 55.9 56.5 55.7 48.5 41.2
Tracker 2 [7] 77.1 47.1 40.4 76.3 44.7 41.2
Tracker 3 [15] 60.9 48.1 27.7 58.5 44.5 27.0

I also evaluated my beat tracker algorithm on the noisy au-
dio. My tracker was evaluated on two of my audio datasets:
one in which the robot did not move (denoted Dataset 1 ) and
one taken while Hubo moved its arms periodically (Dataset
2 ). Its performance is compared using three standard beat
tracking metrics ([4]) with a similar system that uses au-
tocorrelation instead of correlation for the periodicity step,
as well as with three state-of-the-art trackers, in Table 1
[5, 7, 15]. These three trackers were selected for use in a
multiple-tracker system that was restricted to only 5 track-
ers, confirming their utility [12]. Even on the harder dataset,
the proposed system still surpassed the other systems. More
results are detailed at [10].

5. PLANNED WORK
I plan to advance this work in three main areas. The

first is expanding the dataset by using music from a wider
variety of artists and genres and by re-recording the audio in
environments containing different types of noise. This will
help validate the robustness of my algorithm.

I will also enable my algorithm to utilize multiple compo-
nents from the acoustic signal. These components could be
used to help determine multiple rhythmic sources in a single
piece of music, and could also help categorize different types
of beats. If a piece used a bass drum to play the onbeats
and a hi-hat to play the other beats, for example, then by
examining the PLCA components any particular beat could
be identified as belonging to the appropriate category.

Finally, I will develop a program for the Hubo that uses
the beats estimated by my algorithm in order to respond to
live music, such as by tapping along. This will be another
step towards enabling robots to respond to music. It will
also be a suitable demonstration of the utility of my work.
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