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Abstract—We are seeking to enable humanoid robots to partic-

ipate in live human-robot musical ensembles. In ensembles, the

musicians must be able to listen to the audio that they and the

others are producing in order to identify high-level features of the

music (e.g., location in the score, tempo, cues). This information

is crucial for the musicians so that they can know what to play

next. One requirement for robots capable of participating in

musical ensembles is, therefore, the ability to listen to the music

and identify some of these features. While other sensory input

is also important (vision, for example, could enable a robot to

determine what a conductor is indicating), many of these fields

already have a significant amount of active research. Robot vision,

for example, is a popular topic in the research community. By

contrast, a comparatively small amount of research is performed

on robot musical audition. We therefore feel it is important for

us to pursue research in this field.

I. INTRODUCTION

Our long-term goal is to enable a humanoid to perform
alongside humans in a musical ensemble [1]. In order for the
robot to be truly useful for this purpose, it would have to
be able to extract high-level features from the musical audio
and incorporate them into its performance. For example, the
robot would have to identify beat locations so that it could
synchronize its motions with the audio, and would need to
identify pitches so that it could determine if it was playing
the correct musical notes [2], [3]. In order to accurately
determine these features, the robots require a robust set of
music-information retrieval (MIR) algorithms that can function
causally and in real-time. These are the algorithms that analyze
the audio and identify the features the robot must know.

It is preferable that the musical robots that we use be
humanoid in form. Most instruments and dance styles have
already been developed for humans, so the robots would be
ideally shaped to perform in a variety of musical tasks. While
some musical robots have been developed that are specially
designed to play one particular instrument, these robots are
often only vaguely humanoid, and thus ill-suited to perform
any more than one instrument or dance style. In order to keep
our system flexible, we thus wish to enable humanoid robots
to perform musical tasks.

When determining which humanoid to use, we must bal-
ance several considerations. Small humanoids, such as the
RoboNova, are rugged and relatively inexpensive [4]. How-
ever, these robots are often only marginally humanoid and
cannot move with nearly enough control or finesse for our

purposes. More advanced robots, such as the Hubo, are gener-
ally capable of smoother and more human-like movement [2].
These robots, though, are much more expensive and fragile,
so an error which destabilizes (or knocks over) the robot could
potentially be very costly. To satisfy these constraints, we are
using a multitude of robots for our purposes. We prototype
our systems on small robots such as the RoboNova, and once
we know our algorithms work, move them to the Hubo.

II. RELATED WORK

Existing MIR algorithms can extract a variety of features
reliably from audio. For example, current beat trackers can
identify beat locations with a high level of accuracy, par-
ticularly on pieces of popular music, which generally have
strong beats. One common algorithm is based on the work
of Scheirer [5]. In this method, audio is split into multiple
subbands, and periodicity and beat locations are estimated by
filtering the subband envelopes with a bank of comb filters.
This method is quite accurate, particularly for music with
heavy drum sections, and is the basis for several modern beat
trackers [6]. Another popular beat tracking algorithm is based
on the work of Goto [7]. This algorithm also splits audio up
into several subbands, but then performs additional processing
to determine drum patterns and chord changes.

Numerous musical robots have been developed for various
applications. Keepon [8] is a small, cartoon-style robot that
bounces its head in response to music. Haile [9] is a drumming
robot that can respond to a human drummer by producing a
sequence of beats that compliments the human’s. However,
neither of these robots are humanoid, so both are less capable
of playing on a variety of human instruments. The Honda
humanoid, Asimo, has been enabled to step, sing, and scat
in response to a piece of music [10]. Similarly, the HRP-2
has been enabled to dance in an extremely humanlike manner,
though it does not synchronize its motions with the beats [11].

III. ROBOT PLATFORMS

We are utilizing two types of robots in our research. To
prototype and test our music and our gesturing algorithms, we
use smaller, more rugged robots that are resistant to damage.
This allows us to verify that the systems work in a low-risk
environment. Once we are confident that our algorithms are
robust and will not destabalize the robot, we port everything
to Hubo, a larger and more capable humanoid.



Fig. 1. One of the Drexel RoboNovas.

A. RoboNova
The RoboNova is a small humanoid produced by HiTek

Robotics (Figure 1). RoboNova is 35 cm tall and has 16
degrees of freedom (DOF): 5 per leg and 3 per arm. It is
a rugged robot and is easy to repair if its motors become
damaged. Furthermore, the RoboNova is capable of using
Bluetooth communication, so some of the computation can
be offloaded to an external computer. This helps ensure that
the robot will be able to respond to musical audio despite its
relatively limited processor. While the robot’s body is limited
in many ways, such as having only one finger and relatively
limited computational ability, it is still capable of serving as
a prototyping platform.

B. Hubo KHR-4
The Hubo+ series adult-size (130 cm) humanoid robot is

designed and built by the Hubo-Lab at the Korean Advanced
Institute of Science and Technology (KAIST) in Daejeon,
Korea (Figure 2). Drexel has obtained six Hubo+ robots from
KAIST as part of a multinational collaboration between several
American and South Korean universities. These robots are also
intended for distribution to the other American universities in
the collaboration.

The Hubo+ masses 37 kg and is fully actuated. It has 41
DOF and runs on a single 48V Lithium Polymer battery. Each
of its legs contains six DOF: three in the hip (roll, pitch,
and yaw), one in the knee (pitch), and two in the ankle (roll
and pitch). Its arms contain 6 DOF as well: three in the
shoulder, one in the elbow, and two in the wrist. Hubo also
has independently actuated fingers.

IV. MUSIC INFORMATION RETRIEVAL

A. Pitch tracking
For most instruments, there is a direct relationship between

a note’s pitch and the fundamental frequency in the resulting

Fig. 2. One of the Drexel Hubos.

acoustic signal. Therefore, pitch detection algorithms typically
identify notes by finding strong frequencies present in a signal.

Our initial pitch detection method identifies single pitches
using the autocorrelation function, as autocorrelation quantifies
the similarity of a signal to delayed copies of itself [12]. When
only a single note has been played, the autocorrelation of the
audio signal can be used to find the signal’s period, which
corresponds to the note’s fundamental frequency. The highest
peak (aside from the peak at zero delay) in the autocorrelation
will occur at a delay equal to the period of the signal. If there
is a single note being played, the period of the audio signal
should be the same as the period of the note. However, note
detection while playing a song requires the ability to detect
multiple notes at once. Because this is difficult to do with
autocorrelation, a second algorithm was implemented using
the FFT to obtain the frequency spectrum of the signal.

The system looks for a peak in the Fourier spectrum at
a specified note’s fundamental frequency (with a 4% error
tolerance). If it finds such a peak, it assumes the correct note
was played. This system requires knowledge of the score,
in order to determine which notes should have been played.
Figure 3 shows the Fourier magnitude spectrum of two notes
played on the keyboard.

B. Beat tracking

We have developed a beat tracker for use on audio taken
either from CD or a live acoustic channel [2]. The ability
to process live audio is important, because many real-world
environments will require the robot to listen with its own mi-
crophones over an acoustic channel. Our beat tracker algorithm
can function accurately in both environments, and fulfills the



0 100 200 300 400 500 600 700 800 900 1000
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15
Magnitude Spectrum of Notes C4 and E4

Frequency (Hz)

M
a
g
n
itu

d
e
 o

f 
F

o
u
ri
e
r 

S
p
e
ct

ru
m

 (
d
B

)

C4
f = 262

C4 2nd Harmonic
f = 524

E4 2nd Harmonic
f = 660 E4 3rd Harmonic

f = 990

C4 3rd Harmonic
f = 786

E4
f = 330

Fig. 3. Spectrum of two keyboard notes.

constraints of real-time performance and causality.
A frame of audio is extracted from the full acoustic signal.

(Figure 4). Filters then split the audio into several subbands.
The system proceeds to sum the energy in each subband
and place them in a buffer that stores values over multiple
frames. The buffers are autocorrelated, the autocorrelations
are summed, and the peak of the summed autocorrelation is
identified. Autocorrelations have large values at lags that are
proportional to the periodicity of the original input, and audio
can be treated as a somewhat periodic signal, with the period
being its tempo. The lag at the location of the maximum value
can thus be used to calculate the tempo, or audio period. The
frames are then analyzed to find sequences of high-energy
frames spaced according to the audio period. These frames
are likely to contain beats.

Because the audio that the robots listen to may be contam-
inated by acoustic noise, we have studied some techniques to
maintain beat tracking accuracy even in noisy environments
[2]. Our beat tracking system achieves an F-Score of .98 with
clean audio, and .85 with noisy audio, but by adding noise
reduction techniques such as spectral subtraction, accuracy is
increased back up to .92.

V. MAJOR ROBOT PERFORMANCES

We have used our musical algorithms to enable the robots
to participate in robot performances. These demonstrations
served both as a large-scale test of our system under unfa-
vorable conditions and as an exhibition to show the public
what we have done.

The RoboNova has been enabled to move in response to
music by selecting combinations from a gesture corpus of 30
motions and performing them according to the times specified
by the beat tracker [13]. It can also play multiple pieces on
a small keyboard [3]. These performances are routinely used
at demonstrations and open houses to show off the robots’
capabilities. The success of these performances also verifies
the accuracy and reliability of our MIR algorithms.
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Fig. 4. Flowchart for the beat tracking algorithm.

In order to demonstrate the ability of our robots to enhance
a musical performance, we equipped a Hubo robot with a
tambourine and a maraca [1]. The robot then moved its arms
according to the dictates of the beat tracker, adding new notes
to the piece. It was able to stay in time with the music, so its
performance did indeed appear synchronized. We also enabled
Hubo to press several piano keys. While this did not directly
test the pitch tracking algorithm, this helped us confirm the
ability of the Hubo to capably play piano notes.

To test the robot’s dancing ability, we then removed the
instruments and had Hubo perform a series of arm gestures
in response to the audio. This was our first full-fledged Hubo
‘dance’. By watching the robot move its arms in synchrony
with the music, we confirmed that Hubo could dance to audio.

More recently, Drexel displayed its six Hubo robots during
the beginning of its Engineer’s Week event on February 20th,
2012 (Figure 5). In addition to the pre-canned demonstrations
developed by the KAIST lab, the robot also demonstrated its
beat tracking ability. The beat tracking was run on an offboard
computer, which sent Universal Datagram Packets (UDP) to
each robot to tell it when to move. As the music changed, the
robots changed their motions as well to match the new tempos
and beats. All six robots were able to successfully respond to
the audio in a realistic performance environment.

VI. CONCLUSION

We have designed several music-information retrieval al-
gorithms to extract useful features from audio to enable a
variety of robot platforms to move in response to audio. Our
prototyping robots as well as our Hubos are now able to
react to music based on high-level features extracted from
the acoustic signal. We have thus progressed towards our
ultimate goal of enabling humanoids to participate in full-
fledged musical ensembles alongside humans.



Fig. 5. Several Hubos at Drexel’s Engineering Week ceremony.

We are continuing to study additional algorithms to extract
different features from the audio. For example, human dancers
and musicians incorporate knowledge of the mood of a piece
of music into their performances. The dance motions or mu-
sical phrasing performed by humans for a happy and excited
piece of audio are generally different from those performed for
a morose, depressing piece of music. We are thus examining
algorithms that can reliably estimate the mood in audio, so the
robots can make use of this information. Similarly, the genre
of a piece of music can also influence how a human would
react to it, so we are interested in studying genre-detection
algorithms for the robots.

We are also interested in using multiple Hubos to make
more interesting performances. For instance, we intend to
study the effects of having several robots all doing the same
thing to see if that has an effect on the perceived performance.
There are dance troupes that feature several humans perform-
ing the same motions. By enabling robots to move in unison
to music as humans do, they could then be used to research
the perceptual effects of such performance techniques.
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