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Abstract— Humans can often learn high-level features of a
piece of music, such as beats, from only a few seconds of
audio. If robots could obtain this information just as rapidly,
they would be more capable of musical interaction without
needing long lead times to learn the music. The presence of
robot ego noise, however, makes accurately analyzing music
more difficult. In this paper, we focus on the task of learning
musical beats, which are often identifiable to humans even in
noisy environments such as bars. Learning beats would not
only help robots to synchronize their responses to music, but
could lead to learning other aspects of musical audio, such as
other repeated events, timbrel aspects, and more. We introduce
a novel algorithm utilizing stacked spectrograms, in which
each column contains frequency bins from multiple instances
in time, as well as Probabilistic Latent Component Analysis
(PLCA) to learn beats in noisy audio. The stacked spectrograms
are exploited to find time-varying spectral characteristics of
acoustic components, and PLCA is used to learn and separate
the components and find those containing beats. We demon-
strate that this system can learn musical beats even when only
provided with a few seconds of noisy audio.

I. INTRODUCTION

When exposed to a novel piece of music, humans are
often able to learn a lot about it after only a few seconds
of audio. Even in very noisy environments such as dance
clubs and bars, humans can often learn aspects of the music
such as beats within a few moments, and can then use that
information to influence their responses. Knowledge of beat
locations can allow humans to synchronize dance motions
with the music, while knowing what the beats sound like
can allow humans to identify higher-level rhythmic structures
within the piece and incorporate that information into their
responses. For instance, if every other beat of a musical
work sounds different (such as when alternating beats are
played on different drums), humans may be able to identify
the beats as belonging to meaningful categories such as ‘on-
beats’ and ‘off-beats’. Thus, the ability of humans to rapidly
learn musical aspects such as beats is very helpful in allowing
them to respond to music.

It would be useful for musical robots to also be able to
learn aspects of music after only a few seconds of audio. For
this paper, we are particularly focused on enabling them to
learn musical beats. While algorithms enabling robots to find
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beat locations have been developed, few allow robots to learn
the spectral characteristics that determine what a beat sounds
like [1], [2]. The ability to learn how beats sound, though,
could help robots in understanding higher-level rhythmic
structure, just as it can help humans. This knowledge could
be exploited to enable more sophisticated responses, such
as by allowing the robot to differentiate between on-beats
and off-beats and react accordingly. Algorithms for learning
beats could also potentially be extended to learning other
aspects of music, such as learning other repeating events
and environmental characteristics. Finally, knowledge of how
beats sound could potentially be fed back into a beat tracker
to help the system learn what it should be listening for. As
such, we are interested in teaching robots to learn musical
beats in short time frames.

For optimal performance, a system designed to solve this
problem must operate under several constraints. First, it
must be robust to the nonstationary ego noise produced by
a robot’s motors [3]. Second, the system should be able
to learn beats with a few seconds of audio. The faster a
robot can determine this information, the faster it can start
using these features to inform its own responses to music,
with a correspondingly more responsive and therefore better
performance. Humans are often able to perform this task
in just a few seconds, and we would like for robots to
do the same. Finally, the system should obtain both beat
locations and time-varying spectral characteristics simulta-
neously. Chaining the tasks is possible–for instance, by first
running a beat tracker, and then using a source separation
algorithm on the beat frames–but can lead to propagation
of error, where a mistake in the first step compounds in the
second. Performing the two steps together reduces this risk.

We propose a system to solve this problem and simultane-
ously estimate beat locations and time-varying beat spectral
characteristics. We use stacked spectrograms, spectrograms
in which each column contains frequency bins from multiple
instances in time, as well as a Probabilistic Latent Com-
ponent Analysis (PLCA)-based decomposition technique for
extracting the different components of a musical signal. The
stacked spectrogram can be exploited to find the time-varying
spectral characteristics of different parts of the signal, and the
PLCA portion of the system can separate the beat component
from the rest of the music as well as the robot’s ego noise.
As long as the beat components are relatively consistent,
PLCA should be able to identify them despite the presence
of ego noise. The proposed system is then evaluated on audio
contaminated by noise from a state-of-the-art humanoid robot
known as Hubo [4].
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II. LITERATURE REVIEW

Numerous beat trackers have been developed for robots.
Yoshii et al devised a system that utilizes a multiple-agent
architecture to find beat locations, allowing a robot to step in
time with music [1]. Kozima et al enabled a small, toy-like
robot called Keepon to listen to beats so that it can perceive
rhythm and then dance with children [5]. While systems such
as these allowed for robots to react to beat locations, they did
not allow for the robot to learn the spectral characteristics of
the beats. The robots could therefore not use knowledge of
how the beats sounded in their responses.

Weinberg et al enabled a robot to analyze a provided
drum sequence and perform an appropriate response [6]. This
system involved turn-taking between the robot and human
performers, and so the robot did not need to deal with the
effects of its own noise while listening to the human.

Murata et al developed a system to perform beat tracking
in the presence of a robot [2]. Their algorithm uses semi-
blind Independent Component Analysis to separate music
from the scatting and singing sounds of the robot. This
algorithm requires the noise signal to be known in advance,
so while it is useful for digital noises such as a robot’s voice,
it is not as useful for a robot’s motor noise, which is produced
mechanically and varies from performance to performance.

One technique for dealing with ego noise is to try to
remove it from the audio. Ince et al demonstrated that ego
noise could be modeled and masked given prior knowledge
of the acoustics of the room [3]. Our prior work showed
that an adaptive filter for subtracting out noisy frequency
subbands also improved beat tracking accuracy [7]. Oliveira
et al used a variety of noise removal algorithms, including
beamforming, to improve beat tracking performance [8].
These systems, however, are not only unlikely to remove
all of the noise, but also risk removing some of the signal as
well, which can hurt accuracy. Thus, rather than attempting
to design an ideal noise-removal system, we instead focus our
efforts on creating a noise-robust system, which can perform
accurately even in the presence of noise.

III. ROBOT PLATFORM

As it is important for the final system to be able to
function in audio contaminated by robot ego noise, we have
incorporated the Hubo robot (Figure 1) into our experiments.
Hubo is a humanoid robot that has been enabled to perform
several music tasks, including moving its arms on a beat,
using motion-capture data to dance with a troupe, and
actuating pitched pipes by striking them with its arms [7],
[9]. All of these gestures, however, generate large amounts
of motor noise. It would be useful for Hubo to be able to
learn high-level musical features, such as beats, from audio
contaminated with ego noise.

Hubo was initially not equipped with any auditory sensors.
We mounted two lapel microphones on a head that we printed
in a 3D-printer in order to allow the robot to hear. We also
added a 2-channel preamplifier and audio interface called the
USB Dual Pre to the system. As humans are often able to

Fig. 1. A Hubo robot.

hear beats with two ears in noisy audio, we determined that
no more than two channels would be needed for this task.

IV. METHOD

Our method includes four significant steps. First, the
audio is converted into a ‘stacked’, spectrogram with each
column representing multiple temporal windows. Second, the
stacked spectrograms are used to determine the time-varying
frequency components that make up the audio, as well as
the activation probabilities of those components. Third, the
system selects the component that most likely includes the
beat. Lastly, the system estimates beat locations.

A. Calculating the stacked spectrogram

Audio is sampled by Hubo’s microphones at 44.1 kHz
and is averaged over both channels to form a monaural
signal. An initial magnitude spectrogram is then calculated
using a 256-point Fourier Transform with 50% overlap. We
determined empirically that this resolution is high enough for
useful identification of beat times and spectral characteristics,
while also low enough to make the problem computationally
tractable. Because the final system may involve the robot
doing many other things while it listens to the audio, we
wish to minimize the computation required for this task.

The spectrogram’s elements are then averaged over time
to produce a reduced spectrogram in which each column
represents 46.3ms of audio and is spaced 23.2ms from the
preceding column. The first three of these columns are then
vectorized, as are columns 2-4, and so on, and the vectors
are aggregated into a ‘stacked’ spectrogram (Figure 2). This
structure allows for frequency characteristics that last for
more than 46.3ms to be represented in a single column. The
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Fig. 2. Flowchart of the stacked spectrogram calculation.

system can thus learn time-varying spectral characteristics
without having to resort to computationally expensive 2-
dimensional or convolutional methods.

B. Identifying the latent components with PLCA

We next decompose the stacked spectrogram into its com-
ponent elements. There are many methods for decomposing
a matrix, including Principal Components Analysis (PCA)
and Independent Component Analysis (ICA), but both of
these can produce components with negative values, which
are not meaningful for a spectrogram. Probabilistic Latent
Components Analysis (PLCA) and Non-Negative Matrix
Factorization (NMF), however, decompose matrices into
non-negative values (and are numerically equivalent when
the latter minimizes the Kullbach-Leibler divergence), with
PLCA additionally providing a probabilistic framework that
lets us model the stacked spectrogram as a histogram drawn
from a set of latent components [10], [11]. This model allows
the use of an efficient Expectation-Maximization algorithm
to determine those components [10]. We therefore implement
a version of PLCA to decompose the stacked spectrograms.

Given a stacked spectrogram S that has T total time
indices, F frequency indices, and is composed of Z com-
ponents, the system first calculates:

Pt(z|f) =
Pt(z)P (f |z)∑Z

z′=1 Pt(z′)P (f |z′)
(1)

This is the a-posteriori probabilities of the components z
at time t given observed frequencies f . After Equation 1
is calculated, the Maximization step is performed to update
both the activation probabilities Pt(z) and the components
themselves P (f |z):

Pt(z) =

∑F
f=1 Pt(z|f)St(f)∑Z

z′=1

∑F
f=1 Pt(z′|f)St(f)

(2)

P (f |z) =
∑T

t=1 Pt(z|f)St(f)∑F
f ′=1

∑T
t=1 Pt(z|f ′)St(f)

(3)

The Expectation and Maximization steps alternate until
convergence or for a certain number of iterations; in practice,
we found that 40 iterations was sufficient. The system then
records both the activation probabilities Pt(z) and the com-
ponents P (f |z) for the provided musical signal. If needed,
components can then be unstacked to show the spectral
characteristics of those components over time.

An example is shown in Figure 3. Clean and noisy audio
spectrograms of two audio excerpts are displayed, as are the
activation probabilities and the spectral characteristics of a
component that contains beat information for each excerpt.
Peaks in the activation probabilities are aligned with the
beat structure of the audio, even though that structure is
obscured in the noisy audio. Additionally, the differences
between the spectral characteristics of the beats in each
excerpt are visible. For example, the spectrograms indicate
that the beat spectral characteristics for the first example stop
short of 20 kHz, while those of the second example extend
further up the spectrum. This is reflected in the spectral
characteristics plots; ‘King’ has a very sharp cutoff in its
frequency spectrum at about 17 kHz, while ‘Canned’ has a
much smoother rolloff after that point, indicating that it has
some energy in higher frequencies.

C. Choosing the correct component

The system must next select the component that most
likely contains the beat. In order to be flexible, it should
not make assumptions on what beat spectral characteristics
look like. Depending on the instrument used to perform the
beats, the genre of music, and many other factors, the spectral
characteristics of a beat component can vary dramatically. As
such, instead of looking at the frequency components them-
selves to determine which component is likely to contain the
beat, the system examines the activations.

If the beat is relatively constant over the audio, the
activations of the correct beat component will likely spike
at regular intervals corresponding to beats and will be
relatively small elsewhere. In other words, they are likely to
be somewhat periodic, and more periodic components, are
more likely to contain beat information. By estimating the
periodicity of each activation signal the system can therefore
determine which components are likely to contain the beat.

This system estimates periodicity using an autocorrelation-
based algorithm. It first calculates the autocorrelation of
each component’s activations, and then looks for the global
maximum value in a range that corresponds to tempos of
between 40 and 160 beats per minute (BPM). The system is
biased in favor of tempos between 80 and 160 BPM, as most
pop music falls within that range [12]. Global maximums
between 40 and 80 BPM are only used if the autocorrelation
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Fig. 3. Spectrograms of excerpts of clean (top) and noisy (second from top) audio, along with the activation probabilities of their beat component (second
from bottom) and the spectral characteristics of that beat component (bottom). Example 1 is an excerpt from ‘King of the Fairies/Western Junk’ by Blood
or Whiskey, denoted ‘King’, and Example 2 is an excerpt from ’Canned Heat’ by Jamiroquai, denoted ‘Canned’.

also has a local maximum at twice the tempo of the global
maximum; this bias was found to rule out spurious slow
periodicities corresponding to noise. The chosen maximum
value is then divided by the autocorrelated signal’s peak,
which is a representation of the total energy in the signal.
The component whose activation signal has the maximum
ratio is thus marked as the beat component.

D. Marking beat positions

Once the activation signal for the true beat component
is known, dynamic programming is used to mark beats. The
system first estimates the music’s period by finding the lag of
the local maximum of the activation signals’s autocorrelation
function. This value represents the period at which the beat
component activation repeats itself most strongly, and is thus
an estimate of the signal’s period. Periods corresponding to
tempos of less than 80 BPM are halved to double the tempo
estimate, as most pop music is faster than 80 BPM [12].

Once the period of the music is estimated, the system
next selects a moment in time (such as the very beginning
or ending of the piece) and records the value of the activation

probability for the beat component at that time. It then shifts
by one period and looks for a local maximum within three
frames of the shifted position, recording both the value of the
activation at that maximum as well as the position, and this
repeats until the entire piece has been processed. A window
of three frames around the period is used to account for
minor tempo fluctuations in the musical performance. This
process is then repeated for all possible starting positions in
a given range, such as points within one period from the end
of the piece. The list of beat locations corresponding to the
activation values with the highest sum is determined to be
the most likely list of beat locations for the musical piece.

V. EXPERIMENTS AND RESULTS

A set of 18 songs, drawn from the pop music genre
and with tempi ranging from 80 to 160 beats per minute,
was collected, and the beat positions in each song were
annotated by the lead author. All 18 songs have steady, heavy
beats and were previously found to be easy for conventional
beat trackers to analyze (with our previous system obtaining
an average F-Measure score of .98), ensuring that poor
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Fig. 4. Histogram of beat tracking accuracies, in scaled AMLt, on audio
excerpts contaminated with robot noise (0-5s).

performance is due to the noise and not the music itself [7].
The songs were then played through a speaker positioned 9
feet from the Hubo robot, which recorded the audio using
its lapel microphones. At the same time, the Hubo moved its
arms up and down, with the shoulder motor moving from 0 to
1.35 rads and back again every 1.9 seconds. This motion had
a sound pressure level ranging from 2-6 dB, with the exact
value at a given point in time depending on the velocity of
the robot’s motors at that time.

Excerpts of each audio clip were extracted for processing.
In order to satisfy the ‘short-time’ constraint we imposed,
we took two consecutive five-second clips from each song.
The full system was initially run on the first excerpt from
each song, in order to learn both beat locations and the
acoustic components of the music. The components were
then held constant and the rest of the system was run on the
second excerpt from each song. This helped determine if the
components learned in one section of a song were universal
enough to be useful on new audio from the same song.

The excerpts were then processed by the system, and
beat locations and spectral characteristics were extracted. For
comparison, we also ran three off-the-shelf beat trackers on
the same audio. The most directly comparable of these is the
beat tracker designed by Ellis (labeled Tracker 1), as it also
uses a dynamic programming approach [13]. The other two
beat trackers are Dixon’s program ‘Beatroot’, labeled Tracker
2, and Oliveira et al’s program ‘IBT’, labeled Tracker 3 [14],
[15]. In a recent analysis of 16 beat trackers by Holzapfel et
al, these three beat trackers were found to be accurate and
useful enough to merit inclusion in a multiple-tracker system
that was restricted to using only five trackers [16]. Accuracy
was evaluated using the standard beat tracking AMLt metric,
in which a beat estimate is marked as correct if the distance
between itself and the nearest beat is less than 17.5% of the
inter-beat interval, and permits estimates at double- or half-
the ground truth tempo level [17].

The mean result of running our proposed trackers and
the three comparison trackers are shown in Table I, and
histograms of these results are shown in Figures 4 and 5.
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Fig. 5. Histogram of beat tracking accuracies, in scaled AMLt, on audio
excerpts contaminated with robot noise (5-10s).

TABLE I
AVERAGE BEAT TRACKING ACCURACY, IN SCALED AMLT, ON AUDIO

EXCERPTS CONTAMINATED WITH ROBOT NOISE .

Excerpt Proposed Tracker 1 Tracker 2 Tracker 3
0-5s 88.0 35.7 79.8 65.5
5-10s 85.6 38.4 58.0 54.0

As Table I and Figures 4 and 5 show, the proposed
system surpasses the other systems on this noisy audio. When
compared to the other dynamic programming algorithm,
Tracker 1, the proposed system’s superiority is clear, as it
consistently outperforms the off-the-shelf algorithm. Instead
of optimizing over activation probabilities, Tracker 1 uses the
audio’s subband spectral energy to determine beat salience,
but this feature can easily develop spurious peaks due to ego
noise, and so the tracker’s ability is reduced. The proposed
system also outperforms the other two trackers.

Of note is that three of the trackers have a drop in
accuracy between the first and second excerpts, though the
drop of the proposed system is less than 3 points. This is
likely attributable to two main factors. First, because these
excerpts are later in the piece than the first ones, additional
instruments and effects can obscure the beat that are not
present earlier in the music. Second, because the segments
are short, the effects of spurious peaks in beat salience
functions can have a disproportionate effect. One or two
peaks caused by ego noise or by those other instruments can
throw off the trackers, and the systems may have trouble
recovering in the short time span. The proposed system,
however, reduces the chances of this by extracting the beat
component from the rest of the music and noise. The use of
dynamic programming also allows the system to learn beats
in simpler sections of the audio and apply that knowledge
to more complex sections (and Tracker 1, which improved
slightly between excerpts, also used dynamic programming).

While the beat spectral characteristics cannot be evaluated
quantitatively, since without multitrack audio we cannot
know exactly what the ‘pure’ beat components should be,
the strong beat tracking results above imply that they are
accurate. If the spectral characteristics did not correspond
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to the beats, it is improbable that the system, trying to
maximize the activation of the estimated beat component
would find them. Additionally, the spectral characteristics
were often visibly different based on the type of drum used
to produce the beat. Three examples are shown in Figure
6. ‘Song 1’ uses primarily kick drums, which have most
of their energy at low frequencies, for its beats, and the
corresponding spectrums indeed have most of their energy at
low frequencies. The second song uses a kick drum as well
as soft hi-hats, which spread their energy up to very high
frequencies, for its beats. The spectral characteristics for this
song thus show large values in lower frequencies and small
raises at about 13 kHz. Finally, the third song is very hi-hat
heavy, and its strongest frequencies are in the middle-to-high
range of the spectrum, especially after 93 ms.

VI. CONCLUSION AND FUTURE WORK

We have developed a system that can learn beats from
noisy audio given only five seconds of music. In the future,
we aim to expand this algorithm for greater use in both
robotic musical performances and more general topics in
robotic audition. Relating to music, we aim to develop an
updating procedure that allows for the system to listen to
longer excerpts of music and update its knowledge of the
beats without needing to completely retrain on each new
segment of audio. This will allow the robot to react appropri-
ately to the music, even if the tempo or rhythm changes, in a
computationally efficient manner. We also aim to exploit the
knowledge of beats to allow the robots to determine higher-
level structure, such as by classifying beats into categories
such as off-beats, on-beats, and downbeats. This information
could help the robots produce more sophisticated responses.

The ability to learn elements such as beats in musical
audio could also be extended to other domains within robot
audition. Self-driving cars, for instance, could learn what cars
around them sound like, even in the presence of acoustic
noise (such as a rainstorm). Being able to detect other
cars could be useful in collision avoidance. Another useful
domain for this system is with service robots, which could
learn various commands in noisy environments and could

therefore be more useful in real-world situations. In general,
the ability of a robot to learn acoustic components quickly
even in noise could be useful for a wide variety of tasks.
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