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Abstract— In pursuit of our long-term goal of developing
an interactive humanoid musician, we are developing robust
methods to determine musical beat locations from live acoustic
sources. A variety of beat tracking systems have been previously
developed, but for the most part they are optimized for direct
audio input (no acoustic channel and no noise). The presence of
an acoustic channel and noise typically degrades performance
substantially. A robot’s motors, in particular, create non-
stationary noise that can be difficult for a beat detection system
to accommodate, Using an algorithm previously developed by
the authors, we explore techniques for reducing the effects of the
acoustic channel and noise on the system, enabling a humanoid
to robustly follow music under realistic conditions.

I. INTRODUCTION

Our long-term goal is to enable a humanoid to perform
alongside humans in a musical ensemble. Achieving such a
goal requires substantial gains in audio-visual understanding,
fast and precise motion planning, and dexterous manipula-
tion. To be truly interactive in terms of music performance,
a robot must be able to understand and respond to live audio
as its input, rather than responding to electronic control
signals or choreographing motions based on pre-recorded
audio. Only a robot able to process live music and determine
appropriate motions in real-time would be able to handle the
vagaries inherent in live musical shows without constraining
the performers.

A particularly important skill for ensemble musical per-
formance is the ability to listen to music and locate beat
positions, called auditory beat tracking. Numerous algo-
rithms for this skill have been developed, and some are
already in common use in the field of robot audition [1],
[2]. However, many of these beat trackers are optimized
for audio taken directly from an audio source such as a
CD. When the audio is sensed over an acoustic channel
via microphones, beat tracker performance can degrade [3].
This degradation is caused by the reverberation and noise
that occur in the open, real-world environments that we
would like the robots to be able to perform in. The result of
this degradation is that a robot using a fragile beat tracking
algorithm becomes desynchronized from the music, with a
corresponding decrease in its performance quality. In order
to maximize the quality of the performances that occur in
live environments, the beat tracking algorithm must be able
to compensate for noise.
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Multiple types of noise must be considered when modify-
ing auditory algorithms to perform more accurately in live,
open environments. The acoustic channel of the room and
local noise sources (such as HVAC systems and computers)
will produce sounds that are more or less stationary. The
robot itself will also produce constant sounds (such as hum-
ming from its computers and fans), and will also generate
noises as it moves its motors. These motor noises are not
stationary, and in fact can vary based on the feedback of
the beat tracker. For example, if a robot moves its arms in
synchrony with the beat of a song, the motor noises may
be approximately periodic, with the period equivalent to the
tempo of the audio [4]. All of these sources of noise can
contribute to the degradation of performance exhibited by
audio beat trackers.

We seek to implement a robust beat tracking algorithm that
can function in live environments onboard Hubo, an adult-
sized humanoid robot developed by the Korean Advanced
Institute of Science and Technology (KAIST) (Figure 1).
Hubo is a highly capable robot with forty-two degrees of
freedom and sophisticated sensors to help it to move fluidly.
This robot, were it able to determine the beat positions in
live audio, could then respond in synchrony with musical
performances (for example, by hitting a drum or pressing
a piano key). Also, by combining the auditory beat tracker
with other music-analysis algorithms, Hubo’s ability to react
to music could be further enhanced. For example, our team
has also developed a visual beat tracker that can follow a
conductor’s gestures. By combining both modalities for beat
detection, the robot’s knowledge of beat positions could be
made even more robust.

II. LITERATURE REVIEW

Existing beat tracking algorithms can identify beat loca-
tions with a high level of accuracy, particularly on pieces of
popular music, which generally have strong beats [5]. One
common algorithm is based on the work of Scheirer [6].
In this method, audio is split into multiple subbands, and
periodicity and beat locations are estimated by filtering the
subband envelopes with a bank of comb filters. This method
is quite accurate, particularly for music with heavy drum
sections, and is the basis for several modern beat trackers
[7], [8]

Another popular beat tracking algorithm is based on the
work of Goto [9]. This algorithm also splits audio up into
several subbands, but then performs additional processing to
determine drum patterns and chord changes. This additional
information is used to help identify the general metric

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 2916



Fig. 1. Hubo, Drexel’s humanoid robot

structure of the audio. Additionally, multiple beat hypothe-
ses are considered, so that if one series of beats initially
looks probable but is rendered unlikely by new information
(such as beats that do not fit the previous pattern), another
hypothesis can be used.

Robots that can play instruments have been researched for
quite some time. In particular, research on drumming robots
extends back to the late nineties [10], [11]. These robots
could not detect audio, though, and were instead demon-
strations of how to use oscillators and other mechanical
devices to produce interesting drum patterns. A more recent
development in this area is Nico [12]. This is a drummer
robot which has a simple microphone setup that detects audio
intensity. Sufficiently intense moments are determined to be
beats, and the robot uses its knowledge of prior beat locations
to perform. This system, however, does not have any noise
filtering. Also, the system is only used with pure drum beats
that have no accompaniment.

Kaspar, Keepon, and Robovie are three small robots that
perform beat detection on real-world audio signals. Kaspar,
produced by the University of Hertfordshire, has been en-
abled to play a drum in response to audio [13]. Keepon,
developed by Carnegie Mellon University, dances in response
to audio beats [14]. Neither of these robots use filtering or
other noise reduction techniques. Robovie, which counts off
beats as it detects them, uses a technique called semi-blind
Independent Component Analysis (ICA) to help disregard
the noise of its own speech [1]. This type of ICA, though,
requires knowledge of the noise signal (in this case,the
robot’s voice), and cannot be used on unknown noises or
the room reverberation.

Some robots are able to use audio beat tracking to perform

in live music ensembles. One of the earliest of these robots
was Haile, a robotic drummer produced by the Georgia
Institute of Technology [15]. This robot listened to a human
drummer and then synthesized its own beats in response.
In addition to intensity, it could detect pitch and also form
an estimate of how stable the beat was. While it used a
real acoustic channel to detect the audio, its beat detection
algorithm worked exclusively with drum signals (instead
of polyphonic music). Shimon, a marimba-playing robot
developed by the same group, uses the same type of beat
detection algorithm but can also identify beats in both drum
and keyboard signals [16].

One of the most advanced humanoid robots enabled to
respond to beats is ASIMO [2]. This robot, a humanoid
developed by Honda, was programmed to sing, scat, and step
in response to musical beats [17]. ASIMO also uses ICA to
help ignore the sound of its own voice. Unlike Robovie,
this robot steps on the beats and therefore produces a large
amount of noise. ASIMO therefore uses chord-change and
beat-pattern detection algorithms to increase the system’s
robustness to noise.

There is also a subset of dancing robots that simply use
direct audio, instead of audio sensed over an acoustic chan-
nel, to avoid the problem of noise. One example of this is
Tai-chi, a small humanoid developed by Nirvana Technology
[18]. This robot is able to dance by performing beat detection
off of direct audio from CD as well as keyboard audio.

One algorithm that has proven useful for enabling robots
to hear audio in the presence of noise is based on Geometric
Source-Separation (GSS) [4]. For this system, given a room
and the robot’s location in the room, impulses are performed
at various angles around the robot. The microphones record
the impulses and a model of the room acoustics is developed.
This model is then used in a source-separation problem to
attempt to distinguish the audio from various noise sources
in the room. While this system produces a high accuracy
in distinguishing multiple speakers while the robot remains
stationary, it requires a great deal of setup for any given
room. Furthermore, because the robot will very likely move
during the performance, the model could become inaccurate
if the robot moves far enough away from its initial position.

III. BEAT TRACKING

A. Beat tracker for clean audio

In our prior work, we developed a beat tracker for use
on audio taken directly from CD [19]. This algorithm could
function in real-time and was extremely accurate for popular
music, but was untested on audio delivered via a real acoustic
channel. The algorithm is based off of the ones developed
by Scheirer and Klapuri [6], [8].

The frequency content of an acoustic signal is first divided
into subbands with triangular bandpass filters. The subbands
expand in range as they increase in frequency, to more
closely simulate how the human ear hears sounds. The
system then calculates the energy in each subband and
stores those energies in an energy history matrix. The rows
of the matrix are autocorrelated, the autocorrelations are
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Fig. 2. Flowchart of autocorrelation-based beat detection algorithm. The
arrow in the ’Summary autocorrelation’ box indicates the point that will be
used for estimating the tempo.

summed, and the peak of the summary autocorrelation is
found. Autocorrelations have strong responses when the lag
is close to the periodicity of the signal, and audio can be
treated as periodic, with the period being the tempo of the
audio. Thus, the lag at the peak location can be used to
calculate the tempo, or audio period.

The audio period and subband energies are used to deter-
mine which frames contain a beat. As the system processes
a frame, it sums the subband energies to obtain the frame’s
total energy. It then sums this total energy with the energies
from previous frames, delayed from the current frame by
multiples of the audio period, to determine a multi-frame
energy value. If a given frame contains a beat, not only will
it likely have a high energy value, but the frames that are
delayed by multiples of the audio period are also likely to
have high energies. The multi-frame energy for the current
frame is compared with that of all the previous frames in
the audio period. If the current frame’s multi-frame energy
is at least a specified percentage of the maximum value, the
system declares that a beat is in that frame.

B. Noise estimation

Different recording environments will have different
amounts of stationary noise. The acoustics of a room result
in resonant frequencies that interfere with acoustic musical
signals. An example of the effects of this interference is
shown in Figure 3. Furthermore, additional sources of noise,
such as fans, can start and stop within the room. As a result,
the room itself must be frequently analyzed in order to better
understand, and thus compensate for, both sorts of audio
distortion.

A spectrogram can be used to analyze the noise in a room
over a specified time period. Figure 4 is an example of such a
spectrogram, recorded in Hubo’s room at Drexel by a micro-
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Fig. 3. An excerpt from Genesis’s ’That’s All.’ The clean audio on the left
has noticeably clearer structure than the audio on the right which has been
contaminated by noise. In particular, the lowest frequencies have periods of
strong and weak intensity with regularity in the clean audio, but the entire
lower bands appears intense in the noisy audio.
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Fig. 4. Spectrogram of noise in Drexel’s Autonomous Systems Laboratory.
There is a narrow band at about 800 Hz that primarily consists of fan noise,
bursts of primarily motor noise above 1 kHz, and strong room noise below
200 Hz.

phone array placed in proximity to Hubo’s head. During this
recording, the robot was commanded to move three times,
resulting in the three dense areas at approximately 1.2 kHz.
The spectrogram also indicated the presence of a strong band
of noise at about 800 Hz, which was later determined to
be due to fans in the Hubo’s body, as well as strong room
reverberation below 200 Hz. By recording both when the
robot is moving and when it is not, the spectrogram contains
information for analyzing both stationary noise features and
the motor noise of the robot.

C. Spectral subtraction

Spectral subtraction is a technique used to reduce or
remove additive noise from a signal. It has been used in
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Fig. 5. Flowchart of the spectral subtraction algorithm. The spectrum of an
audio signal is compared to a threshold that is based on the noise spectrum,
in this case, the mean of the spectrum. This determines which frequencies
are subtracted out.

speech recognition in order to improve the accuracy of
speech-to-text algorithms [20]. We are exploring its use in the
context of beat recognition. Its performance will indicate to
us which direction we should take the beat tracker to further
reduce the effect of noise on the system.

Spectral subtraction is the term for an algorithm that
subtracts the contributions of various frequencies from a
signal. By using an algorithm for noise estimation (such as
analyzing a spectrogram of noise for strong frequencies), a
system can identify which frequencies are likely to be noisy.
When these frequencies are attenuated, the effects of noise
on the system should be reduced, and the beat tracker should
perform better.

This algorithm, however, raises two important concerns.
One problem is that any useful information in the attenuated
frequencies is also lost. Thus, if certain frequencies are
always set to zero (as is the case with a static filter), in-
formation in those frequencies will be discarded even during
less noisy sections of the audio. As a result, it is important to
only reduce a frequency when the system is confident that the
noise outweighs whatever audio information the frequency
possessed. The other problem is that spectral subtraction
introduces additional spurious sinusoidal distortion into the
signal. [4]. It is possible that this distortion could reduce
the effectiveness of the tracker, reducing or eliminating the
benefits from using spectral subtraction.

In order to deal with the first problem, we designed
an adaptive filter. For each frequency bin, the system sets
a separate attenuation threshold. This threshold is based
on the mean and standard deviation of the noise in that
frequency bin during a segment of recorded noise (Figure
5). The system checks the amplitude at each frequency bin
to determine if it is larger than the threshold at that frequency
bin. If it is, then the audio is judged to be louder than

Fig. 6. The Hubo and the array of microphones

the noise, and that frequency bin is not attenuated. If it
is not, then the audio may be overpowered by the noise,
and that frequency bin is suppressed. Whether or not the
second problem had a significant effect was examined by
our experiments.

IV. EXPERIMENTAL PROCEDURE

The primary author listened to twenty songs in the popular
music genre and marked their beat locations. The total length
of these audio recordings was approximately one hour. The
pieces were then played on a Roland speaker positioned ten
feet away from the Hubo robot. An array of six Behringer
condenser microphones was positioned around the Hubo, in
the configuration shown in Figure 6. The array was used
to record the audio. We programmed Hubo to move its
shoulders in two different ways during the trials:

• Hubo moved its arms randomly during the test. This
produced random ego noise that would then interfere
with the audio signal. This represented a ‘complete
desynchronization’ case in which the motor noise was
completely uncorrelated from the audio. Such a situa-
tion occurs in the first few seconds of an audio piece,
when the beat tracker has not had time to lock onto the
beat positions yet, and during tempo changes in a piece,
when the beat tracker has not yet switched to the new
beat pattern.

• Hubo moved its arms when prompted by the beat
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TABLE I
BEAT TRACKER RESULTS FOR DIFFERENT CASES, USING THE F-MEASURE METRIC.

No. of Direct audio Acoustic channel, random motions Acoustic channel, synchronized motions
Tempo songs No filter No filter Static filter Adaptive filter No filter Static filter Adaptive filter
90-115 5 .98 .82 .92 .92 .83 .85 .94
116-126 5 .98 .90 .96 .96 .89 .88 .92
127-132 5 .98 .88 .95 .96 .95 .93 .95
133-152 5 .96 .77 .87 .95 .76 .83 .86
Total 20 .98 .84 .93 .94 .86 .87 .92

tracker, which was tracking clean audio at the same time
as the microphones recorded the noisy audio. As our
beat tracker performs well on clean audio, the motions
were completely synchronized with the audio. This case
presented additional challenges compared to the prior
test, because the motor noise could become periodic
with the same period as the audio signal, which could
reduce the ability of the tracker to correctly identify
beats.

After evaluating several different methods of setting the
attenuation threshold, we experimentally determined that the
best choice was the threshold shown in Equation 1.

T (b) = µN(b) + .98 ∗ σN(b) (1)

where T is the threshold vector, N is the noise spectrum, b
is the bin, µ is the mean of the noise energy at each bin, and
σ is the standard deviation. A noise sample was recorded by
the same microphone array prior to the music being played.
This sample was analyzed over a five-second recording to
obtain the values for µ and σ in each frequency bin. Audio
was divided into .025 second frames for the main beat
tracking algorithm, but for the spectral subtraction section,
the previous .25s of audio was averaged together before the
frequency values were compared to the threshold. This was
to stop repeated ‘on-off’ switching of the frequencies, which
could cause rapidly fluctuating frame energies and reduce the
tracker’s performance.

The audio was recorded on the microphone array, averaged
over the microphones, and then beat-tracked with our algo-
rithm. Tracking was performed with no filtering, with static
filtering, and with adaptive filtering. These results were also
compared with the case of audio taken directly from CD as
a baseline.

V. RESULTS

Our beat tracking results are shown in Table I. All of the
tempos are in beats per minute. All of the beat tracker ac-
curacies were calculated according to the F-Measure metric
[21]. This metric combines both precision (2) and recall (3)
information to determine quantitatively the accuracy of the
tracker. A high F-Measure (4) indicates that the tracker can
identify most of the beat positions in a piece and does not
identify many erroneous beats.

P =
correctly estimated beats

all estimated beats
(2)

R =
correctly estimated beats

all beats in song
(3)

F-Measure =
2 ∗ P ∗R
P +R

(4)

Compared to the baseline for direct audio, the tracker’s
performance when the robot moves its arms at random,
without using any filtering, is significantly decreased. This
decrease is overcome somewhat by using static spectral sub-
traction. However, results are most improved using adaptive
spectral subtraction. In fact, the F-Measure increased to about
.95, which is relatively close to the baseline score of .98.
Faster pieces were particularly improved. This indicates both
the utility of spectral subtraction as a noise-reduction tool,
and the importance of using adaptive filtering instead of just
static filtering.

Accuracy in this case is still not quite as high as in
the direct case. This is likely due to a combination of the
filters not eliminating 100% of the noise from the audio, the
information that is lost when some frequencies are set to 0,
and the spurious sinusoidal distortion created by the spectral
subtraction technique. Still, the adaptive filter is still able
to close the gap between the live and direct audio cases by
about 77%, a considerable amount.

Similar results are seen in the case where the motions are
synchronized to the music using beat tracking. The unfiltered
audio case is actually slightly improved from the situation
when the robot’s motions are random. This may indicate
that the robot is beginning to track the noise as well as
the audio. Static filtering improves the accuracy slightly,
but not significantly. This is only logical; since the robot’s
motions are periodic and predictable, it stands to reason
that a constant nulling of certain frequencies would either
eliminate motor noise frequencies when the motors were not
moving, or would not eliminate them when the motors were
moving. Much better are the adaptive filter results, which
increase accuracy up to over .92. Although this score is still
not as good as the direct audio score, it is much better than
the unfiltered score, and indicates the potential inherent in
spectral subtraction algorithms for this type of problem.

The synchronized case, when filtered, still performs more
poorly than the non-synchronized case. This is likely due to
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the motor noise coinciding with much of the beat informa-
tion, since the motions happen almost exactly on the beats.
When the noise frequencies are nulled, the beat information
is also lost. Future techniques could exploit knowledge of
when the motors are moving in order to better account for
their effects on distortion.

VI. CONCLUSION

Our results show that spectral subtraction is a viable
technique to increase the accuracy of beat trackers in noisy
environments. While there is still room for improvement, we
have increased the accuracy of the real-world beat tracker to
above 92% even in the completely synchronized case.

Future work will involve comparing our system to other
noise-reduction algorithms. One such algorithm is HARK,
produced for use with ASIMO [4]. HARK uses Geometric
Source Separation to localize and then separate out the audio
from different sources, and could conceivably be used to
enable the robot to single out a music source and discard
motor and other noises. A test against HARK could provide
a good benchmark for our system.

We also plan to incorporate more information about the
robot’s motions into the beat tracker. Because the robot
knows when it is about to move, it can communicate this
information to the beat tracker. If the tracker knows when
the robot is moving, and to what position, it can more
accurately determine the exact effects of ego noise and can
more accurately filter it out.

Lastly, we plan to use the beat tracker to advance on our
goal of enabling Hubo to perform in musical ensembles.
Along these lines, we plan to integrate additional music-
information retrieval algorithms, such as visual beat tracking.
As the robot understands music more, it will be able to react
to the audio in increasingly intelligent ways. Eventually, we
hope to enable the Hubo to understand music enough to fully
participate in a variety of live music performances.

REFERENCES

[1] Takeshi Mizumoto, Ryu Takeda, Kazuyoshi Yoshii, Kazunori Ko-
matani, Tetsuya Ogata, and Hiroshi G Okuno, “A robot listens to
music and counts its beats aloud by separating music from counting
voice,” in Proceedings of the IEEE-RSJ International Conference on
Intelligent Robots and Systems, 2008.

[2] Kazuyoshi Yoshii, Kazuhiro Nakadai, Toyotaka Torii, Yuji Hasegawa,
Hiroshi Tsujino, Kazunori Komatani, Tetsuya Ogata, and Hiroshi G
Okuno, “A biped robot that keeps steps in time with musical beats
while listening to music with its own ears,” in Proceedings of the
IEEE-RSJ International Conference on Intelligent Robots and Systems,
2007.

[3] Kazumasa Murata, Kazuhiro Nakadai, Kazuyoshi Yoshii, Ryu Takeda,
Toyotaka Torii, Hiroshi G Okuno, Yuji Hasegawa, and Hiroshi Tsu-
jino, “A robot uses its own microphone to synchronize its steps to
musical beats while scatting and singing,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, September 2008.

[4] Gokhan Ince, Kazuhiro Nakadai, Tobias Rodemann, Hiroshi Tsujino,
and Jun-Ichi Imura, “Robust ego noise suppression of a robot,” Lecture
Notes in Computer Science, vol. 6096, pp. 62–71, 2010.

[5] Peter Grosche, Meinard Muller, and Craig Stuart, “What makes beat
tracking diffucult? a case study on chopin mazuraks,” in Proceedings
of the 2010 International Society for Music Information Retrieval,
2010.

[6] Eric D. Scheirer, “Tempo and beat analysis of acoustic musical
signals,” Journal of the Acoustic Society of America, vol. 103, no.
1, 1998.

[7] Matthew E. P. Davies and Mark D. Plumbley, “Context-dependent
beat tracking of musical audio,” IEEE Transactions on Audio, Speech,
and Language Processiong, vol. 15, no. 3, 2007.

[8] Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Estola, “Analysis of
the meter of acoustic musical signals,” IEEE Transactions on Speech
and Audio Processing, 2004.

[9] Masataka Goto, “An audio-based real-time beat tracking system for
music with or withotu drum-sounds,” Journal of New Music Research,
vol. 30, no. 2, pp. 159–171, June 2001.

[10] A Hajian, D Sanchez, and R Howe, “Drum roll: Increasing bandwidth
through passive impedance modulation,” in Proceedings of the
1997 IEEE International Conference on Robotics and Automation,
Albuquerque, April 1997.

[11] M Williamson, Robot Arm Control Exploiting Natural Dynamics,
Ph.D. thesis, Massachusetts Institute of Technology, 1999.

[12] Christopher Crick, Matthew Munz, Tomislav Nad, and Brian Scas-
sellati, “Robotic drumming: synchronization in social tasks,” in
Proceedings of the IEEE International Workshop on Robot and Human
Interactive Communication, 2005.

[13] Hatice Kose-Bagci, Kerstin Dautenhahn, Dag Sverre Syrdal, and
Chrystopher L. Nehaniv, “Drum-mate: A human-humanoid drumming
experience,” in Proceedings of the IEEE-RAS International Conference
on Humanoid Robots, 2007.

[14] Marek P. Michalowski, Reid Simmons, and Hideki Kozima, “Rhyth-
mic attention in child-robot dance play,” in Proceedings of the
18th IEEE International Symposium on Robot and Human Interactive
Communication, 2009.

[15] Gil Weinberg and Scott Driscoll, “Robot-human interaction with an
anthropomorphic percussionist,” in Proceedings of the Conference on
Human Factors in Computer Systems, 2006.

[16] Gil Weinberg, Aparna Raman, and Trishul Mallikarjuna, “Interactive
jamming with shimon: A social robotic musician,” in Proceedings
of the 4th ACM/IEEE International Conference on Human Robot
Interaction, 2009.

[17] Kazumasa Murata, Kazuhiro Nakadai, Ryu Takeda, Hiroshi G Okuno,
Toyotaka Torii, Yuji Hasegawa, and Hiroshi Tsujino, “A beat-tracking
robot for human-robot interaction and its evaluation,” in Proceedings
of the IEEE-RAS International Conference on Humanoid Robots, 2008.

[18] Naoto Nakahara, Koji Miyazaki, Hajime Sakamoto, Takashi X. Fuji-
sawa, Noriko Nagata, and Ryohei Nakatsu, “Dance motion control
of a humanoid robot based on real-time tempo tracking from musical
audio signals,” in Proceedings of the 8th International Conference on
Entertainment Computing, 2009.

[19] David Grunberg, Robert Ellenberg, In Hyeuk Kim, Jun Ho Oh, Paul Y.
Oh, and Youngmoo E. Kim, “Development of an autonomous dancing
robot,” International Journal of Hybrid Information Technology, vol.
3, no. 2, pp. 33–44, April 2010.

[20] Sunil D. Kamath and Philipos C. Loizou, “A multiband spectral
subtraction method for enhancing speech corrupted by colored noise,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2002.

[21] Matthew E. P. Davies, Norburto Degara, and Mark D. Plumbley,
“Evaluation methods for musical audio beat tracking algorithms,”
Tech. Rep. C4DM-09-06, Queen Mary University of London, October
2009.

2921


